Investigating the hydrogen-bonding model of urea denaturation.
نویسندگان
چکیده
The direct binding mechanism for urea-based denaturation of proteins was tested with a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM). Thermodynamic measurements of the polymer's hydrophobic collapse were complemented by Fourier transform infrared (FTIR) spectroscopy, Stokes radius measurements, and methylated urea experiments. It was found that the lower critical solution temperature (LCST) of PNIPAM decreased as urea was added to the solution. Therefore, urea actually facilitated the hydrophobic collapse of the macromolecule. Moreover, these thermodynamic measurements were strongly correlated with amide I band data which indicated that the decrease in the LCST was coupled to the direct hydrogen bonding of urea to the amide moieties of the polymer. In addition, the hydrogen bonding was found to be highly cooperative, which is consistent with a cross-linking (bivalent binding) mechanism. Cross-linking was confirmed by Stokes radius measurements below the polymer's LCST using gel filtration chromatography. Finally, phase transition measurements with methylurea, dimethylurea, and tetramethylurea indicated that these substituted compounds caused the LCST of PNIPAM to rise with increasing methyl group content. No evidence could be found for the direct binding of any of these methylated ureas to the polymer amide moieties by FTIR. These results are inconsistent with a direct hydrogen-bonding mechanism for the urea-induced denaturation of proteins.
منابع مشابه
Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
In order to clarify the mechanism of denaturant-induced unfolding of proteins we have calculated the interactions between hydrophobic and ionic species in aqueous guanidinium chloride and urea solutions using molecular dynamics simulations. Hydrophobic association is not significantly changed in urea or guanidinium chloride solutions. The strength of interaction between ion pairs is greatly dim...
متن کاملThermal Transition Properties of Hoki (Macruronus novaezelandiae) and Ling (Genypterus blacodes) Skin Collagens: Implications for Processing
Hoki (Macruronus novaezelandiae) and ling (Genypterus blacodes) are cold-water fish caught in New Zealand waters. Their skins are a major component of the post-processing waste stream. Valuable products could be developed from the skins, as they are primarily composed of collagen, which has many commercial applications. We prepared acid soluble collagens (ASC) from hoki and ling skins, and anal...
متن کاملInteraction of urea with amino acids: implications for urea-induced protein denaturation.
The molecular mechanism of urea-induced protein denaturation is not yet fully understood. Mainly two opposing mechanisms are controversially discussed, according to which either hydrophobic, or polar interactions are the dominant driving force. To resolve this question, we have investigated the interactions between urea and all 20 amino acids by comprehensive molecular dynamics simulations of 2...
متن کاملAqueous urea solutions: structure, energetics, and urea aggregation.
Urea is ubiquitously used as a protein denaturant. To study the structure and energetics of aqueous urea solutions, we have carried out molecular dynamics simulations for a wide range of urea concentrations and temperatures. The hydrogen bonds between urea and water were found to be significantly weaker than those between water molecules, which drives urea self-aggregation due to the hydrophobi...
متن کاملTime-dependent X-ray diffraction studies on urea/hen egg white lysozyme complexes reveal structural changes that indicate onset of denaturation
Temporal binding of urea to lysozyme was examined using X-ray diffraction of single crystals of urea/lysozyme complexes prepared by soaking native lysozyme crystals in solutions containing 9 M urea. Four different soak times of 2, 4, 7 and 10 hours were used. The five crystal structures (including the native lysozyme), refined to 1.6 Å resolution, reveal that as the soaking time increased, more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 26 شماره
صفحات -
تاریخ انتشار 2009